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Abstract 

Many low-density frameworks containing channel 
networks (such as zeolites) are related to periodic 
minimal surfaces of well characterized surface area. 
This observation allows a direct connection to be 
made between the framework density and the average 
size of rings in the framework that lie on the hyper- 
bolic surface. The analysis exploits the observation 
that the area per vertex on the surfaces is the same 
as that for related uncurved sheet silicates, which 
implies that the density of the framework can be 
inferred from the average ring size alone. The relation 
between density and bond lengths and angles is also 
discussed. A lower bound for the density of open- 
framework silicates and hydrophobic zeolites is sug- 
gested that is consistent with the preferred bonding 
geometry of SiO2 networks. 

Introduction 

The design and synthesis of new crystalline sieve 
materials depends on our capacity to tune pore size 
and morphology. Elucidation of the relation between 
density and structure of the atomic framework would 
improve that capacity. Apart from empirical correla- 
tions between ring size and framework density (FD, 
the number of Si/Al T atoms in alumino-silicates per 
1000Aa) in zeolites (Brunner & Meier, 1989), the 
geometrical factors that set the density of crystalline 
frameworks are not known. Such three-dimensional 
crystalline frameworks can always be fitted onto a 
periodic curved surface that contains all the edges 
of the framework. The framework is then viewed as 
a tessellation of a non-Euclidean two-dimensional 
object whose geometry is hyperbolic. In many cases, 
the surface contains self-intersections. We confine our 
analysis to so-called 'open' frameworks, which lie on 
surfaces that are free of self-intersections, forming 
open-tunnel labyrinths on either side of the surface. 
Such surfaces are often well described by infinite 
periodic minimal surfaces (IPMS) (Andersson, Hyde, 
Larsson & Lidin, 1988), although our analysis is easily 
generalized to any hyperbolic surface. 
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Framework density 

The framework density of any three-dimensional 
network can be expressed in terms of the surface area 
per unit cell (A) of a hyperbolic surface that contains 
all vertex atoms in the framework, the cell volume, 
V, and the surface area per vertex atom, 12, as FD 
(=103N/V)=IOa(A/FIV), where N denotes the 
number of vertices per (framework) unit cell. The 
area of a curved surface defines the average Gaussian 
curvature, (K), ~unitcell K da=(K)A. The global 
Gauss-Bonnet theorem (do Carmo, 1976) yields 

FO= 1032 lxl/(l<K>l av), 
where X is the Euler-Poincar6 characteristic of that 
portion of the hyperbolic surface in a unit cell of the 
network. (In general, the unit cell of the framework 
differs from that of the hyperbolic surface.) In terms 
of a dimensionless constant, C = [(A3)/2,n'[X[ V2)] l/z, 
the density has the alternative forms 

F D =  lo3cn- ' l (g) l  ~/2 

o r  

F D =  103ca-a/2(2~r[xI/ N) 1/2. (1) 

The connection between the surface topology 
and the average ring size on the surface follows 
from Euler's relation (Coxeter, 1969), viz x / N =  
[z+  (1 - z/2)n]/n. Here, z denotes the connectivity 
(number of edges per vertex) of the framework and 
n the average ring size (counting only those rings that 
are spanned by the hyperbolic surface). Hence, the 
density of a four-connected framework is simply 
related to the average ring size, 

F D =  103Cj2-3/2127r(n-4)/n]l/2. (2) 

Bonding geometry 

It is intuitively clear that the density is also related 
to the magnitudes of bond angles and lengths. The 
connection can be drawn from consideration of the 
complementary rings to those whose interior contains 
the hyperbolic surface, namely the 'collar' rings that 
surround tunnels of the surface. The curvature of the 
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latter rings is a measure of the normal curvature of 
any surface that shrouds the network. If all edges of 
the network describe geodesics of the hyperbolic sur- 
face, the curvature of the latter rings is equal to the 
normal curvature of the surface in the vicinity of the 
edges. For an arbitrary edge geometry, we can decom- 
pose the bending of the edge into two components: 
the normal curvature and the geodesic torsion. The 
normal curvature is the curvature of the edge projec- 
ted onto the plane containing the surface normal 
vector and the instantaneous tangential direction of 
the edge. The geodesic torsion is the curvature of the 
edge projected onto the tangent plane to the surface 
(do Carmo, 1976). 

For a minimal surface, the (average value of the) 
Gaussian curvature, (K), is related to the normal 
curvature, k,, and the geodesic torsion, ~'g, in a simple 
way, 

2 - ( K ) =  k2 + ~'g. 

The normal curvature of curves on the surface linking 
adjacent T atoms is set by the Euclidean distances 
(I) between these atoms and the angles (A) subtended 
by the straight lines joining adjacent T atoms. The 
magnitude of this curvature is equal to the reciprocal 
of the radius of a circle that contains three vertices 
spanned by two adjacent bonds. The average value 
of the normal curvature of the surface over the region 
of surface sampled by the two bonds is 

k.=2(cos A/2)/l. (3) 

The framework density on a minimal surface can then 
be estimated with the help of (1), 

_21v2 (4a) FD = 103 C 12-1{[(cos A/2)2/ l ]  2 + -,gt . 

If the (curved) edges are along the lines of curvature 
on the surface, the geodesic torsion of the network 
vanishes (zg =0).  In this case, the density can be 
written as 

FD= lO3Ca-~ [(cos a/2)2/ l .  (4b) 

At the other extreme, if the edges lie along the 
asymptotic directions, they are straight (k, = 0) and 
the framework is torsional only (do Carmo, 1976). 

Equations (2) and (4) relate the framework density 
to the average ring geometry in the framework. The 
former equation admits calculation of the density as 
a function of the average ring size of those rings 
spanned by surface, while the latter describes the 
density in terms of the bonding dimensions of collar 
rings. To proceed further, C and /2 must also be 
specified. 

For intersection-free triply periodic minimal sur- 
faces, C is approximately equal to 3 (Hyde, 1990). 
The vertex density on the surface (O -t) depends on 
the choice of surface, which is not unique. Surfaces 
of differing topology can be fitted to a framework, 
which depends on the rings chosen to lie on the 

Table 1. Density data for framework ( alumino- ) 
silicates, with lowest-genus periodic minimal surfaces 

consistent with tunnel morphologies 

F D  
Z e o l i t e /  S i /A1  ( T a t o m s  
s i l i ca t e  r a t i o  x 1000 flk3) (ref) S u r f a c e  (ref) Ixl/N 

Zeolite X 
Faujasite 
Zeolite Y 
Hexagonal 

faujasite 
Hydrophobic  

zeolite Y 
Rho 
ZK5 
Gismondine 
Linde A 
Gmelinite 
Sodalite 
ZSM5 

Melanophlogite 

1-1.5 12.4 (I) D (s) 0.08 4.36 
2.31 12.7 (27 D 0.08 4.36 
1.5-3 12.7 cl) D 0.08 4.36 

>3 12.7 TM T-WP (6) 0.08 4.36 

>5 13.3 (4) D 0.08 4.36 

3 14.3 (2) P 0.08 4.36 
2 14.6 (2) I°WP 0.12 4.57 
1.00 15.4 (2) T 0.12 4.57 
1.00 12.9 (2) p(5) 0.17 4.80 
2.00 14.6 (2) H ~5) 0.17 4.80 
1.00 17.2 (2) D 0.17 4.80 
8.00 17.9 t2) Genus 9 0.17 4.80 

surface (7) 
co 18.9 t2) 0.20 5.00 

]×l/N denotes the ratio of  the Euler-Poincar6 characteristic (per zeolite unit 
cell) to the number  of  T atoms in the unit cell. n is the average T-atom ring 
size on the surface. The choice of  lowest-genus surface is discussed in the 
main text. 

The surfaces for hexagonal faujasite and melanophlogite are unknown. 
In the former case, ring sizes and surface topology must be the same as 
those for zeolite Y. In the latter, all six-rings define tunnels of  the clathrate 
structure so that the average ring size is five. 

References: (1) Breck (1974); (2) Meier & Olson (1987); (3) Annen, 
Young, Arhancet & Davis (1991); (4) Thomasson, Lidin & Andersson (1987); 
(5) Andersson, Hyde, Larsson & Lidin (1988); (6) Karcher (1989); (7) Hyde 
(1991). 

surface and on those chosen to surround a tunnel 
(forming a collar). The two-dimensional nature of 
the frameworks becomes apparent by focusing on 
those contiguous faces bounded by smaller rings. 
(Larger rings then define the tunnels.) Accordingly, 
we choose the surface that minimizes the value of the 
average ring size on the surface, n (and maximizes 
O-~). By this convention, its Euler-Poincar6 charac- 
teristic (X) and the genus attain the least magnitudes 
possible for the framework fitted onto a hyperbolic 
surface. 

To check the validity of these equations for silicate 
frameworks, the magnitude of O must be set. The 
simplest assumption is that this value is equal to that 
of fiat-sheet silicates. In other words, we assume that 
the surface density is independent of the surface 
curvature. Under this assumption, surface densities 
in silicate frameworks can be estimated from unit-cell 
dimensions of (fiat-) sheet silicates, viz I2 = 12.0/~2 
per SiO2 group for talc (Brindley & Brown, 1980). 

Table 1 lists framework (alumino-) silicate data 
consistent with the convention for surface topology 
described above. Fig. 1 shows the plot of measured 
framework densities for a range of open-framework 
alumino-silicates compared with the values expected 
from (2). 

We were surprised to find that our twin assump- 
tions, of constant surface density and hyperbolic sur- 
faces close to minimal surfaces, hold, to a reasonable 
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approximation. The framework densities for silicon- 
rich zeolites Y, hexagonal faujasite, rho, ZSM5 and 
the silicate melanophlogite are close to the theoretical 
curve based on the surface density of talc. The area 
per SiO2 group is apparently unchanged from that in 
the fiat state, regardless of topology• Thus, the density 
is dependent only on the average ring size. 

We note that the FDs of zeolites containing 
aluminium fall below the silicate curve. This is expec- 
ted because of the larger area required for aluminium 
atoms as well as the variable influence of interstitial 
templating species. A general trend of increasing area 
with aluminium content is discernible, although fur- 
ther quantification is marred by the presence of the 
templating species• 

Given this apparent conservation of surface density 
in silicate networks, a number of disparate observa- 
tions can be reconciled. Brunner & Meier (1989) have 
observed that the minimum FD in zeolites is related 
to the size of the smallest ring in the framework. We 
have established that the framework density increases 
monotonically with the average ring size, n. Our con- 
vention for the surface topology ensures that larger 
rings do not contribute to n. Hence, the smallest rings 
are a crude measure of the average ring size, whose 
value determines the FD. Consequently, the least- 
dense zeolite frameworks will contain a large propor- 
tion of three- and four-rings, in accord with an earlier 
hypothesis of Brunner (1979). 

We turn now to the bonding geometry in silicate 
frameworks. The T - T  distance is related to the T-O 
bonding parameters by the equation l = 2d(sin ao/2), 
where d is the T-O bond length and ao is the T - O - T  
bond angle. Recall that A denotes the (vertex) angle 
of collar rings about a T atom formed by connecting 
adjacent T atoms with straight lines. In total, six 
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Fig. 1. Plot of framework density versus the average ring size of 
the hyperbolic net (n) for zeolites (and the open-framework 
silicate melanophlogite, see Table 1). The curve is calculated 
from equation (2), which is valid for a four-connected network 
on a minimal surface occupying an area of 12.0 A2 per vertex 
on the surface (corresponding to the area per SiO2 group in 
talc). The filled circles denote high-silica structures whose Si: AI 
ratio exceeds three. 

angles occur at each vertex of four-connected nets. 
Four of these angles lie in the hyperbolic surface and 
two define the vertex angles of the collar rings (A). 
A is related to the O - T - O  angle ( a t )  and the T - O - T  
angle (ce0) by OlT--"i '[-[-Olo~A~OlT-[-T[--Ol O. The 
bounds are achieved for torsionless frameworks (r ,  = 
0), in which case the bound reached depends on the 
location of the two O atoms bonded to the three T 
atoms (which subtend the angle A) relative to the 
ring containing the T atoms. The upper limit is real- 
ized if the O atom lies inside the ring; the lower bound 
requires all O atoms to lie outside the ring. 

It is clear from (4a) that the density is minimized 
when the geodesic torsion of the framework vanishes. 
This occurs when the net edges are parallel to the 
principal directions. If all O atoms lie inside rings 
formed by connecting adjacent T atoms (A = a t +  
r r - a o ) ,  the density is further reduced. If the bond 
angles and lengths are constrained, (4b) provides an 
estimate of the most open framework that can be 
realized in SiO2 networks. The Si-O bond length is 
typically equal to 1.61 ]k, the O - T - O  angle is 109.5 ° 
and the T - O - T  angle is 140 ° (Liebau, 1985). These 
data yield a minimum FD for silicon-rich zeolites of 
10.7 T atoms per 1000/~3 (average ring size 4.2), 
compared with 13.3 for the least-dense open- 
framework silicate synthesized to date, hydrophobic 
zeolite Y. Meier (1986) has designed a number 
of hypothetical frameworks containing three-rings 
whose densities are close to this minimum value. The 
stability of three-rings is, however, questionable. 
More recently, O'Keeffe (1991) proposed a 'rare' 
four-connected net whose smallest rings are four- 
rings (his net # 15) whose density is also close to this 
limiting value. Such a low value of the FD can only 
be achieved when all the (coplanar) O atoms lie within 
the silicon rings, which may be a sterically unfavour- 
able configuation. 

Four-connected nets of lower framework density 
than the minimum density derived here have been 
proposed as hypothetical zeolite frameworks. Such 
nets can only be realized at the expense of the usual 
bond angles. 

Lower bounds on the FD of other materials can 
likewise be determined. A number of reports suggest 
that sieve materials of lower density than open- 
framework silicates can be made by substitution of 
Al and P (Wilson, Lok, Messina, Cannon & Flanigen, 
1982) or Ga and P (Estermann, McCusker, Baer- 
locher, Merrouche & Kessler, 1991) in the T-atom 
positions• If so, the relation between the surface 
density and bonding dimensions embodied in (3) 
must reflect this expectation. The anticipated lower 
surface densities (12> 12.0A2), together with the 
smaller T - O - T  angles in cristobalite-related struc- 
tures for A1-O-P and G a - O - P  compared with S i -O-  
Si (O'Keeffe & Hyde, 1976), account for the low FDs. 
The low value of the G e - O - G e  angle in cristobalites 
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suggests that low-density-framework germanates 
should be particularly stable. 

The recent announcement  of ultralarge pores 
( -50/~.)  in "zeolites" (Kresge, Leonowicz, Roth, 
Vartuli & Beck, 1992) clearly violates the expected 
lower bound on the framework density of  zeolites 
derived in this paper. We expect the atomic 
frameworks of these large-pore materials to differ 
from the zeolites considered here: viz hyperbolic 
alumino-silicate monolayers. Our calculations sug- 
gest that these structures are probably related to 
double-layer silicates, which lie on hyperbolic 'mesh'  
surfaces (Hyde, 1993). 

The analysis does not take into account the vari- 
ations of  Gaussian curvature over the tessellating 
surface and is therefore most accurate for low-density 
structures, such as those included here. Furthermore,  
the value of the variable C in the equations has been 
derived for minimal surfaces. Admittedly, many 
framework structures do not form geodesic nets on 
periodic minimal surfaces; in many cases, parallel 
surfaces to minimal surfaces offer better descriptions. 
For example, the T atoms in the faujasite framework 
are displaced approximately 61- of a typical tunnel 
radius from the D surface. Using the standard for- 
mulae for parallel surfaces, we estimate the area of 
the parallel surface to be less than 3% smaller than 
that of the D surface, in which case the constant C 
is overestimated by less than 5%. Clearly then, at this 
stage, the assumption of homogeneous minimal sur- 
faces is adequate to describe the faujasite framework. 

This approach, which views three-dimensional sili- 
cate frameworks as non-Euclidean two-dimensional 
structures, reveals a striking universality. The con- 
stancy of surface density suggested by this analysis 
is a novel constraint on the geometries of open- 
framework structures, in addition to the usual require- 
ments of preferred bonding dimensions. Indeed, 
density/ring-size data for a number of other clathrate 
frameworks (water, silicides, germanides) suggests 
that the constancy of surface density - irrespective 
of the framework curvature - may be a more general 
structural requirement (Hyde, 1993). The areas per C 
atom in the sp 2 carbon polymers graphite and C6o 

2 fullerene are 2.62 and 2.64 A ,  respectively. Note that 
the predicted surface densities of hypothetical hyper- 
bolic sp 2 carbon polymers (dubbed 'schwarzites') 
(Mackay & Terrones, 1991; Lenosky Gonze, Teter & 
Elser, 1992; Vanderbilt & Tersoff, 1991; O'Keeffe, 
Adams & Sankey, 1992) do not exhibit this univer- 

sality. Clearly, then, the constraint is not a trivial 
one, automatically satisfied by standard interatomic 
potentials. 

We have excluded so-called 'dense'  framework sili- 
cates from our analysis. We expect these structures 
to be related to self-intersecting surfaces, for which 
surface-area data are less certain. However, in these 
cases too, it seems that this two-dimensional picture 
of frameworks holds: analyses of dense silicates 
(tridymite and quartz) (Hyde, 1993) reveals the same 
surface density as that found here. 
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